Desktop manufacturing

Advances in 3-D printing and embedded electronics will revolutionize how everything from coffee makers to cellphones gets made.

Topics:

Desktop manufacturing

Imagine that your coffee maker breaks just before you’re about to host a brunch. You go online and click on the model you want to buy. But you don’t have to wait for it to be shipped; instead, a machine on your desk kicks into operation. Inside a glass chamber, a nozzle spits out the electronics, chassis, motor and other components, layer by layer. An hour later, you snap together a few parts and the brewing begins.

That machine would be the “Star Trek” replicator realized. Well, a beta version anyway. Already, several engineering threads are converging that may pull the replicator out of the far future and put it in our homes, or at least at Kinko’s, in the next few decades. MIT’s Neil Gershenfeld, director of the Center for Bits and Atoms, dubs the vision “personal fabrication.” John Canny, a professor at UC-Berkeley’s College of Engineering, where I’m a writer in residence, refers to the research field as “flexonics.” Whatever the buzzword, it’s not unlike desktop publishing, but for products instead of paper. Call it desktop manufacturing.

It starts with the physical object itself, the plastic chassis for the remote control that you stepped on, the body of the coffee maker. Product designers have literally been printing out objects for more than a decade. A digital design is loaded into a machine that drips out thin beads of plastic and glue, building up hair-thin layers until the whole form is complete. These kinds of three-dimensional printers are perhaps the coolest tool in the realm of rapid prototyping, technology that allows designers to quickly mock up models of new products. A designer can feel how the next-generation phone she’s working on will fit in a shirt pocket.



While these 3-D printers are improving in quality and dropping in price, the devices they produce still have one problem: They don’t actually work. That’s where printable electronics come into play. Researchers at many corporate and university laboratories are brewing inks of semiconducting nanocrystals and using cannibalized inkjet printers to pattern the nanomaterials into circuits on plastic, paper and even cloth. Printable electronics is likely to hit the mainstream first in flexible displays that can be cranked out in rolls and then as UPC bar-code-killing RFID (radio frequency identification) tags stamped right on a product package.

While printable electronics are still far from delivering the reliability and performance of traditional circuitry, the printable-electronics technology could eventually be incorporated into a 3-D printer. For example, the printer would embed layers of electronics within the housing of the device it printed. Of course, that might mean that a hairline crack in your cellphone would be fatal.

The next step is to print mechanical structures — motors and actuators, devices for controlling or moving something. At MIT, Joseph Jacobson and his students have printed microscopic linear drive motors, similar to pistons, and thermal actuators that are triggered by heat. These kinds of pinhead-size devices, called MEMS (micro-electromechanical systems), are found in everything from automobile air bags to dishwashers. To make larger mechanisms, such as the components that cause a blender’s blades to spin when it’s switched on, Canny and his Berkeley colleagues propose filling inkjet cartridges with electroactive polymers, essentially plastic that contracts when zapped with electricity. The same material generates a voltage when flexed, making it an ideal choice for buttons or switches in a printed object.

These kinds of polymers could potentially be loaded into University of Bath engineer Adrian Bowyer’s RepRap (replicating rapid prototyper). The RepRap project has just begun, but Bowyer’s aim is to build a “universal constructor” that not only can manufacture objects but can actually make copies of itself. Over the next four years of development, he plans to release the blueprints and software code for free online to accelerate progress.

Desktop manufacturing is still in its infancy. But as the baby steps get bigger, the potential impact of this technology on everything from product development to retailing becomes clearer. Canny says that in many cases, consumers might pay for plans instead of a product. Raw materials — alloy, polymer and nanoparticle inks — will be staples on a person’s grocery list. While companies now play down how crappily their products are made, those who embrace personal fabrication won’t even have to worry about it anymore. Perhaps they’ll be more willing to pay big bucks for good design if they can leave the manufacturing to us. Still, I look forward to a generation of do-it-yourself industrial designers and tinkerers who improve and customize these commercial product plans. Their work could be swapped online like so many MP3s.

David Pescovitz is an affiliate researcher at the Institute For The Future and the co-editor of BoingBoing.net. He is also the special projects editor for MAKE and the writer-in-residence for UC Berkeley's College of Engineering and the Berkeley Sciences.

More Related Stories

Featured Slide Shows

  • Share on Twitter
  • Share on Facebook
  • 1 of 13
  • Close
  • Fullscreen
  • Thumbnails
    Clare Barboza/Bloomsbury

    Uncommon Apples

    Api Étoile

    Like little stars.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Calville Blanc

    World's best pie apple. Essential for Tarte Tatin. Has five prominent ribs.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Chenango Strawberry

    So pretty. So early. So ephemeral. Tastes like strawberry candy (slightly).

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Chestnut Crab

    My personal fave. Ultra-crisp. Graham cracker flavor. Should be famous. Isn't.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    D'Arcy Spice

    High flavored with notes of blood orange and allspice. Very rare.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Esopus Spitzenberg

    Jefferson's favorite. The best all-purpose American apple.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Granite Beauty

    New Hampshire's native son has a grizzled appearance and a strangely addictive curry flavor. Very, very rare.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Hewes Crab

    Makes the best hard cider in America. Soon to be famous.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Hidden Rose

    Freak seedling found in an Oregon field in the '60s has pink flesh and a fragrant strawberry snap. Makes a killer rose cider.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Knobbed Russet

    Freak city.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Newtown Pippin

    Ben Franklin's favorite. Queen Victoria's favorite. Only apple native to NYC.

    Clare Barboza/Bloomsbury

    Uncommon Apples

    Pitmaston Pineapple

    Really does taste like pineapple.

  • Recent Slide Shows

Comments

0 Comments

Comment Preview

Your name will appear as username ( settings | log out )

You may use these HTML tags and attributes: <a href=""> <b> <em> <strong> <i> <blockquote>