Four fingers are enough

A research team has produced an inexpensive robotic hand capable of accomplishing dexterous human tasks VIDEO

Topics: Scientific American, robots, Science, U.S. Military, Bioengineering,

Four fingers are enough
This article originally appeared on Scientific American.

Scientific American

A robot that can reproduce the dexterity of the human hand remains a dream of the bioengineering profession. One new approach to achieving this goal avoids trying to replicate the intricacy of the bones, joints and ligaments that produce our most basic gestures.

The Sandia Hand

A Sandia National Laboratories research team has adopted just such a strategy by designing a modular, plastic proto-hand whose electronics system is largely made from parts found in cell phones. The Sandia Hand can still perform with a high level of finesse for a robot, and is even capable of replacing the batteries in a small flashlight. It is expected to cost about $10,000, a fraction of the $250,000 price tag for a state-of-the-art robot hand today.

The researchers were able to scrimp in a number of clever ways. “One was scouring the globe for the least expensive, highest-performing components like motors, gears, etcetera,” says Curt Salisbury, the project’s principal investigator. “Another was to build the entire electronics system from commodity parts, especially those found in cell phones. We also moved from metal structural elements to plastic, being careful to design the structures so plastic would provide adequate strength.”

The Sandia Hand’s fingers are modular and affixed to the hand frame via magnets. This gives the researchers the flexibility to design interchangeable appendages tipped with screwdrivers, flashlights, cameras and other tools. The fingers are also designed to detach automatically to avoid damage if the hand hits a wall or other solid object too hard. The researchers say the hand can even be manipulated to retrieve and reattach a fallen finger.

Replaceable Fingers

The Hand’s current incarnation has only four fingers, including the equivalent of an opposable thumb. “It turns out that for a wide range of manipulation tasks that humans do, four fingers is enough,” Salisbury says. Still, future iterations of the Hand could have any number of fingers and any arrangement of those fingers without adding much cost or complexity, he adds.

Sandia Hand control glove

Although the Hand might someday be programmed to operate autonomously, for now a human controls the device using either a sensor-laden glove or a basic control panel. The glove is a custom design that reads a person’s hand posture and attempts to replicate that with the robot hand, Salisbury says. The communication protocol right now is a USB cable, but could be upgraded to include any wireless communications approach, he adds. The team’s goal is to develop a glove that costs about $1,000.

At such a low cost, and with the Defense Advanced Research Projects Agency (DARPA) funding the project, the Hand might be a welcome addition to mobile robots involved in disarming and disposing of improvised explosive devices (IEDs). The U.S. military has deployed thousands of unmanned ground robots worth hundreds of millions of dollars to disarm IEDs used against troops in Afghanistan and Iraq over the past decade. Many of these devices, such as iRobot’s PackBot, are driven by remote control into dangerous areas where they use clamp-like metal claws to search for and dispose of bombs. A significant amount of the money spent on these battle bots goes toward spare parts to replace those damaged in the field. One of Sandia’s goals is to offer greater proficiency at disarming (rather than detonating) bombs.

Sandia researchers are experimenting with upgrades to the Hand, including a palm with two embedded cameras that convey stereo images to a human operator during a grasping sequence. “After that,” Salisbury says, “we hope this technology will move to field tests.”

In the video below, the Sandia Hand demonstrates a number of capabilities, including lifting a suitcase, picking up a telephone handset and, perhaps most impressively, dropping a AA battery into a flashlight.

Images and video courtesy of SandiaLabs.

About the Author: Larry is the associate editor of technology for Scientific American, covering a variety of tech-related topics, including biotech, computers, military tech, nanotech and robots. Follow on Twitter @lggreenemeier.
The views expressed are those of the author and are not necessarily those of Scientific American.

More Related Stories

Featured Slide Shows

  • Share on Twitter
  • Share on Facebook
  • 1 of 10
  • Close
  • Fullscreen
  • Thumbnails
    Michael Ohl/Museum fur Naturkunde

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Soul-Sucking Dementor Wasp

    Latin name: Ampulex dementor

    Truong Ngyuen

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    10,000th reptile species

    Latin name: Cyrtodactylus vilaphongi

    Jodi Rowley/Australian Museum

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Colour-changing thorny frogs

    Latin name: Gracixalus lumarius

    Judith L. Eger

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Long-fanged bat

    Latin name: Hypsugo dolichodon

    Neang Thy Moe/FFI

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Stealthy wolf snake

    Latin name: Lycodon zoosvictoriae

    Michael Janes

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Feathered coral

    Latin name: Ovabunda andamanensis

    Jerome Constant

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    World's second-longest insect

    Phryganistria heusii yentuensis

    Nantasak Pinkaew

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Slide 8

    Latin name: Sirindhornia spp

    Tim Johnson

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Slide 9

    Tylototriton shanorum

  • Recent Slide Shows



Comment Preview

Your name will appear as username ( settings | log out )

You may use these HTML tags and attributes: <a href=""> <b> <em> <strong> <i> <blockquote>