Where does identity come from?

A neuroscience experiment attempts to settle an ancient philosophical question. The tentative answer? Get out more

Topics: Scientific American, Mice, Identity, Julia Freund, rfid, ,

Where does identity come from?
This article originally appeared on Scientific American.

Scientific American Imagine we rewound the tape of your life. Your diplomas are pulled off of walls, unframed, and returned. Your children grow smaller, and then vanish. Soon, you too become smaller. Your adult teeth retract, your baby teeth return, and your traits and foibles start to slip away. Once language goes, you are not so much you as potential you. We keep rewinding still, until we’re halving and halving a colony of cells, finally arriving at that amazing singularity: the cell that will become you.

The question, of course, is what happens when we press “play” again. Are your talents, traits, and insecurities so deeply embedded in your genes that they’re basically inevitable? Or could things go rather differently with just a few tiny nudges? In other words, how much of your fate do you allot to your genes, versus your surroundings, versus chance? This is navel gazing that matters.

In the absence of a time rewinder, the next best experiment is to do what Julia Freund and her colleagues did in a simple, yet remarkable recent study.  These investigators placed genetically identical individuals (mice in this case) in a common environment, and asked whether systematic behavioral differences could still develop between them. An answer of “Yes” would mean that there are sources of behavioral variability – “individuality,” if you will – that aren’t accounted for by the combination of genes and common environment.

You Might Also Like

In their experiment, Freund and her colleagues housed 40 genetically identical mice in a so-called “enriched” environment, and monitored their behavior over a period of three months (about 10 to 15 percent of their lifespan) during their early life. The enriched environment was very generous as far as lab-mouse accommodations go, with an approximately 36 square foot footprint, and a multi-tiered arrangement of platforms, nesting boxes, and interconnecting tubes. In these conditions, mice can exhibit a more natural set of exploratory behaviors than in the more typical confining cage.

What made this study different from, say, a study of human twins is that the subjects’ movements could be tracked in extraordinary detail over a significant portion of their lifespan. Each mouse in the study was tagged with a radiofrequency ID (RFID) transponder, whose location was monitored by one of twenty antennas inconspicuously arranged among water bottles, tubes, and nesting boxes. Every movement, chase, and sedentary spell was recorded and logged.

To study potential differences in behavior among the mice, the experimenters used a measure called “roaming entropy.” Basically, this captures how often you get out, and with how much variety. If you’re someone who mostly just darts between work and home, your roaming entropy is low. If you’re the kind of person who could conceivably be just about anywhere at any given time, your roaming entropy is high.

Initially, the mice were fairly uniform in their roaming entropy. As the weeks progressed, however, the population started to diverge, with some mice being markedly more exploratory than others. If we take the tendency to explore as a kind of crude trait, then this is one trait that elaborates over time, in a way that isn’t strictly determined by genes or available resources.

The most interesting part of the study, however, came when the researchers examined the brain changes that paralleled the changes in exploratory behavior. Before ending the experiment, the mice were injected with a compound that’s selectively incorporated into dividing cells, and hence labels adult-born neurons.  While most neurons are fashioned during early development, there are a handful of well-studied brain areas in which new neurons are continuously produced even in adulthood.

More Related Stories

Featured Slide Shows

  • Share on Twitter
  • Share on Facebook
  • 1 of 10
  • Close
  • Fullscreen
  • Thumbnails
    Michael Ohl/Museum fur Naturkunde

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Soul-Sucking Dementor Wasp

    Latin name: Ampulex dementor

    Truong Ngyuen

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    10,000th reptile species

    Latin name: Cyrtodactylus vilaphongi

    Jodi Rowley/Australian Museum

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Colour-changing thorny frogs

    Latin name: Gracixalus lumarius

    Judith L. Eger

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Long-fanged bat

    Latin name: Hypsugo dolichodon

    Neang Thy Moe/FFI

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Stealthy wolf snake

    Latin name: Lycodon zoosvictoriae

    Michael Janes

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Feathered coral

    Latin name: Ovabunda andamanensis

    Jerome Constant

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    World's second-longest insect

    Phryganistria heusii yentuensis

    Nantasak Pinkaew

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Slide 8

    Latin name: Sirindhornia spp

    Tim Johnson

    Soul-sucking 'dementor' wasps and 8 other crazy new species

    Slide 9

    Tylototriton shanorum

  • Recent Slide Shows



Comment Preview

Your name will appear as username ( settings | log out )

You may use these HTML tags and attributes: <a href=""> <b> <em> <strong> <i> <blockquote>