How to trace a sarin attack

New technology improves our ability to trace the deadly nerve agent

Topics: MIT Technology Review, sarin, Chemical weapon, technology, Science, , ,

New research indicates that chemical fingerprints can make positive matches between batches of sarin.

Sarin sleuths: A United Nations expert, wearing a gas mask, holds a plastic bag containing samples from one of the sites of an alleged chemical weapons attack in Damascus.

U.S. researchers say the same methods used to confirm the presence of the deadly nerve agent sarin could eventually find matches between different samples of the chemical.

Just a few years ago, this wasn’t possible. But research advancing at two U.S. labs is finding that a key ingredient of sarin carries subtle hydrocarbon impurities that vary from sample to sample, forming a telltale and persistent fingerprint.

This means that if sarin was used again in a war or terror attack, investigators could determine, say, whether it was from the same batch as the chemical used in Syria or matched evidence found in the home of a suspect.

“Once you know it’s sarin—the next question is where did it come from?” says Carlos Fraga, a chemist at Pacific Northwest National Laboratory in Richland, Washington, who coauthored a 2011 paper on the method with colleagues at Battelle Memorial Institute in Columbus, Ohio. “The U.S. government wants to be ready when there might be a chemical attack.” If there is, it could now be possible to figure out who might be responsible.

You Might Also Like

The work isn’t of immediate relevance in attributing the August 21 attack in Syria. The United States says substantial evidence implicates the Syrian regime in the attack, in which the United States says 1,429 people were killed, including 426 children.

But in the future, the technology could be important, says Ralf Trapp, a chemist and technical consultant to the Organization for the Prohibition of Chemical Weapons, in The Hague. “In the Cold War context, identifying batches wasn’t the issue; if one side used it, the other side knows where it came from,” he says. “In the context of terrorism, now it could be of interest.”

The source of the impurities being found in sarin isn’t clear, Fraga says; they may have been present in the fossil fuel that served as a manufacturing feedstock, or simply in hydrocarbons that were in the air during manufacturing or processing. But they vary consistently from batch to batch.

Fraga’s technique for finding them relies on common methods: gas chromatography and mass spectrometry. The gas chromatograph separates the molecules that make up a complex chemical sample. The mass spectrometer then hits each molecule with electrons, breaking them up into fragments that identify the molecule. This identifies a fingerprint of sarin itself, and also the fingerprint of any hydrocarbon impurities.

Similar fingerprinting work is progressing on other chemical weapons and poisons. Ricin, a toxin derived from castor beans that’s considered both a chemical and a biological weapon, has also been found to have distinctive batch-by-batch fingerprints. This is because it is generally extracted using acetone, which contains detectable impurities, Fraga says.

“Sarin is where we have the proof that this works,” he says. “But this should work for other chemicals, too.” And because common lab equipment is used to find the fingerprint, he adds, “the same tool that you would use to say ‘It’s sarin’ would be the same tool for source attribution.”

Fraga’s work stems from a U.S. Department of Homeland Security project launched after the 2001 anthrax attacks, in which letters containing anthrax spores were mailed to news outlets and the offices of two U.S. senators, killing five people and infecting 17 others.

David Talbot

David Talbot, the founder of Salon, is the author of the New York Times bestseller “Brothers: The Hidden History of the Kennedy Years.” He is now working on a book about the legendary CIA director Allen W. Dulles and the rise of the national security state.

More Related Stories

Featured Slide Shows

  • Share on Twitter
  • Share on Facebook
  • 1 of 11
  • Close
  • Fullscreen
  • Thumbnails
    Martyna Blaszczyk/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 1

    Pond de l'Archeveche - hundreds thousands of padlocks locked to a bridge by random couples, as a symbol of their eternal love. After another iconic Pont des Arts bridge was cleared of the padlocks in 2010 (as a safety measure), people started to place their love symbols on this one. Today both of the bridges are full of love locks again.

    Anders Andersson/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 2

    A bird's view of tulip fields near Voorhout in the Netherlands, photographed with a drone in April 2015.

    Aashit Desai/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 3

    Angalamman Festival is celebrated every year in a small town called Kaveripattinam in Tamil Nadu. Devotees, numbering in tens of thousands, converge in this town the day after Maha Shivratri to worship the deity Angalamman, meaning 'The Guardian God'. During the festival some of the worshippers paint their faces that personifies Goddess Kali. Other indulge in the ritual of piercing iron rods throughout their cheeks.

    Allan Gichigi/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 4

    Kit Mikai is a natural rock formation about 40m high found in Western Kenya. She goes up the rocks regularly to meditate. Kit Mikai, Kenya

    Chris Ludlow/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 5

    On a weekend trip to buffalo from Toronto we made a pit stop at Niagara Falls on the Canadian side. I took this shot with my nexus 5 smartphone. I was randomly shooting the falls themselves from different viewpoints when I happened to get a pretty lucky and interesting shot of this lone seagull on patrol over the falls. I didn't even realize I had captured it in the shot until I went back through the photos a few days later

    Jassen T./National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 6

    Incredibly beautiful and extremely remote. Koehn Lake, Mojave Desert, California. Aerial Image.

    Howard Singleton/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 7

    Lucky timing! The oxpecker was originally sitting on hippo's head. I could see the hippo was going into a huge yawn (threat display?) and the oxpecker had to vacate it's perch. When I snapped the pic, the oxpecker appeared on the verge of being inhaled and was perfectly positioned between the massive gaping jaws of the hippo. The oxpecker also appears to be screeching in terror and back-pedaling to avoid being a snack!

    Abrar Mohsin/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 8

    The Yetis of Nepal - The Aghoris as they are called are marked by colorful body paint and clothes

    Madeline Crowley/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 9

    Taken from a zodiac raft on a painfully cold, rainy day

    Ian Bird/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 10

    This wave is situated right near the CBD of Sydney. Some describe it as the most dangerous wave in Australia, due to it breaking on barnacle covered rocks only a few feet deep and only ten metres from the cliff face. If you fall off you could find yourself in a life and death situation. This photo was taken 300 feet directly above the wave from a helicopter, just as the surfer is pulling into the lip of the barrel.

  • Recent Slide Shows

Comments

Loading Comments...