The human nose can distinguish between 1 trillion different scents

New research suggests our olfactory system is far more sensitive than we previously thought

Topics: Smithsonian.com, Human Nose, Nose, Sense of Smell, dogs, Rockefeller University,

The human nose can distinguish between 1 trillion different scents
This article originally appeared on Smithsonian.com.

Smithsonian Magazine You may have heard this one before: Humans, especially compared to animals such as dogs, have a remarkably weak sense of smell. Over and over again, it’s reported that we can only distinguish between about 10,000 different scents—a large number, but one that’s easily dwarfed by that of dogs, estimated to have a sense of smell that’s 1,000 to 10,000 times more sensitive than ours.

It may be indisputable that dogs do have a superior sense of smell, but new research suggests that our own isn’t too shabby either. And it turns out that the “10,000 different scents” figure, concocted in the 1920s, was a theoretical estimate, not based on any hard data.

When a group of researchers from the Rockefeller University sought to rigorously figure out for the first time how many scents we can distinguish, they showed the 1920s figure to be a dramatic underestimate. In a study published today in Science, they show that—at least among the 26 participants in their study—the human nose is actually capable of distinguishing between something on the order of a trillion different scents.

“The message here is that we have more sensitivity in our sense of smell than for which we give ourselves credit,” Andreas Keller, an olfactory researcher at Rockefeller and lead author of the study, said in a press statement. “We just don’t pay attention to it and don’t use it in everyday life.” 

You Might Also Like

A big part of the reason it took so long to accurately gauge our scent sensitivity is that it’s much more difficult to do so than, say, test the range of wavelengths of light the human eye can perceive, or the range of soundwaves the human ear can hear. But the researchers had a hunch that the real number was far greater than 10,000, because it was previously documented that humans have upwards of 400 different smell receptors which work in concert. For comparison, the three light receptors in the human eye allow us to see an estimated 10 million colors.

Noting that the vast majority of real-world scents are the result of many molecules mixed together—the smell of a rose, for instance, is the result of 275 unique molecules in combination—the researchers developed a method to test their hunch. They worked with a diverse set of 128 different molecules that act as odorants, mixing them in unique combinations. Although many familiar scents—such as orange, anise and spearmint—are the results of molecules used in the study, the odorants were deliberately mixed to produce unfamiliar smells (combinations that were often, the researchers note, rather “nasty and weird”).

By mixing either 10, 20 or 30 different types of molecules together in varying concentrations, the researchers could theoretically produce trillions of different scents to test on the participants. Of course, given the impracticality of asking people to stand around and sniff trillions of small glass tubes, the researchers had to come up with an expedited method.

They did so by using the same principles that political pollsters use when they call a representative sample of voters and use their responses to extrapolate to the general population. In this case, the researchers sought to determine how different two vials had to be—in terms of the percentage of different odorant molecules between them—for participants to generally tell them apart at levels greater than chance.

Then the work began: For each test, a volunteer was given three vials—two with identical substances, and one with a different mixture—and asked to identify the outlier. Each participant was exposed to about 500 different odorant combinations, and in total, a few thousand scents were sniffed.

After analyzing the test subjects’ success rates in picking the odd ones out, the authors determined that, on average, two vials had to contain at least 49 percent different odorant molecules for them to be reliably distinguished. To put this in more impressive words, two vials could be 51 percent identical, and the participants were still able to tell them apart.

Extrapolating this to the total amount of combinations possible, merely given the 128 molecules used in the experiment, indicated that the participants were able to distinguish between at least a trillion different scent combinations. The real total is probably much higher, the researchers say, because of the many more molecules that exist in the real world.

For a team of scientists that have devoted their careers to the oft-overlooked power of olfaction, this finding smells like sweet vindication. As co-author Leslie Vosshall put it, ”I hope our paper will overturn this terrible reputation that humans have for not being good smellers.”

More Smithsonian.com

More Related Stories

Featured Slide Shows

  • Share on Twitter
  • Share on Facebook
  • 1 of 11
  • Close
  • Fullscreen
  • Thumbnails
    Martyna Blaszczyk/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 1

    Pond de l'Archeveche - hundreds thousands of padlocks locked to a bridge by random couples, as a symbol of their eternal love. After another iconic Pont des Arts bridge was cleared of the padlocks in 2010 (as a safety measure), people started to place their love symbols on this one. Today both of the bridges are full of love locks again.

    Anders Andersson/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 2

    A bird's view of tulip fields near Voorhout in the Netherlands, photographed with a drone in April 2015.

    Aashit Desai/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 3

    Angalamman Festival is celebrated every year in a small town called Kaveripattinam in Tamil Nadu. Devotees, numbering in tens of thousands, converge in this town the day after Maha Shivratri to worship the deity Angalamman, meaning 'The Guardian God'. During the festival some of the worshippers paint their faces that personifies Goddess Kali. Other indulge in the ritual of piercing iron rods throughout their cheeks.

    Allan Gichigi/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 4

    Kit Mikai is a natural rock formation about 40m high found in Western Kenya. She goes up the rocks regularly to meditate. Kit Mikai, Kenya

    Chris Ludlow/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 5

    On a weekend trip to buffalo from Toronto we made a pit stop at Niagara Falls on the Canadian side. I took this shot with my nexus 5 smartphone. I was randomly shooting the falls themselves from different viewpoints when I happened to get a pretty lucky and interesting shot of this lone seagull on patrol over the falls. I didn't even realize I had captured it in the shot until I went back through the photos a few days later

    Jassen T./National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 6

    Incredibly beautiful and extremely remote. Koehn Lake, Mojave Desert, California. Aerial Image.

    Howard Singleton/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 7

    Lucky timing! The oxpecker was originally sitting on hippo's head. I could see the hippo was going into a huge yawn (threat display?) and the oxpecker had to vacate it's perch. When I snapped the pic, the oxpecker appeared on the verge of being inhaled and was perfectly positioned between the massive gaping jaws of the hippo. The oxpecker also appears to be screeching in terror and back-pedaling to avoid being a snack!

    Abrar Mohsin/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 8

    The Yetis of Nepal - The Aghoris as they are called are marked by colorful body paint and clothes

    Madeline Crowley/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 9

    Taken from a zodiac raft on a painfully cold, rainy day

    Ian Bird/National Geographic Traveler Photo Contest

    National Geographic Traveler Photo Contest Entries

    Slide 10

    This wave is situated right near the CBD of Sydney. Some describe it as the most dangerous wave in Australia, due to it breaking on barnacle covered rocks only a few feet deep and only ten metres from the cliff face. If you fall off you could find yourself in a life and death situation. This photo was taken 300 feet directly above the wave from a helicopter, just as the surfer is pulling into the lip of the barrel.

  • Recent Slide Shows

Comments

Loading Comments...