Is the knuckleball an optical illusion?
New research suggests that the pitch doesn't bob and weave suddenly; it just seems to
Topics: The Walrus, R.A. Dickey, Baseball, MLB, toronto blue jays, Toronto, Canada, New Orleans, Tulane University, Pitching, Entertainment News

STANDARD baseball pitch—slider, curveball, fastball—seems to slavishly follow the laws of physics, making it possible to predict where a ball will go and how it will get there. The knuckleball is different. It appears to dip suddenly, dart to one side or the other, or—when you least expect it—to float in straight over the plate. Hitters are left flailing desperately at it. On a six-game streak last season, pitcher R. A. Dickey struck out sixty-three batters and gave up a single unearned run. And yet Dickey, who joined the Blue Jays this season, is the only active knuckler in the major leagues. When he won the National League Cy Young Award in 2012, he was the first knuckleball pitcher ever to do so.
Set against the heroics of home run hitters and base stealers, even the most successful knuckleball pitchers are seen as curios. The pitch is thrown at an unimpressive velocity, seldom hitting more than seventy or eighty miles per hour, while the best fastballs can crack 100 mph (baseball is still measured in imperial). It’s considered the pitch of second chances: because of that leisurely velocity, knuckleballers’ arms don’t wear out. Its reputation for unpredictability is both a blessing and a curse. Even Dickey doesn’t know how he will perform from day to day, or what will happen after the ball leaves his grasp, and while he may have led the National League in strikeouts last season he also gave up twenty-four home runs. Only fourteen pitchers in the league gave up more.
To understand why the knuckleball seems so perverse, we must first consider a standard pitch and why a baseball curves when it’s spinning. Imagine you’re hovering over a baseball as it leaves the pitcher’s hand, spinning clockwise as it makes its way to the plate. A thin layer of air, called the boundary layer, momentarily clings to the surface of the ball, then separates as the ball moves on, creating an outboard motor–like wake behind it.
On the right, the boundary layer and the air flowing past it are moving in the same direction. But on the other side, the left, things are very different. The boundary layer is turning into the oncoming air, forcing it to separate sooner than on the right. This shifts the wake over to the left side of the ball, pushing the ball to the right.





Comments
15 Comments